Comparing Natural and Constrained Movements: New Insights into the Visuomotor Control of Grasping
نویسندگان
چکیده
BACKGROUND Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior intraparietal sulcus (area AIP) with premotor area F5. Single unit recordings of macaque indicate that activity of neurons in this circuit is not simply linked to any particular object. Instead, responses correspond to the final hand configuration used to grasp the object. Although a human homologue of such a circuit has been identified, its role in planning and controlling different grasp configurations has not been decisively shown. We used functional magnetic resonance imaging to explicitly test whether activity within this network varies depending on the congruency between the adopted grasp and the grasp called by the stimulus. METHODOLOGY/PRINCIPAL FINDINGS Subjects were requested to reach towards and grasp a small or a large stimulus naturally (i.e., precision grip, involving the opposition of index finger and thumb, for a small size stimulus and a whole hand grasp for a larger stimulus) or with an constrained grasp (i.e., a precision grip for a large stimulus and a whole hand grasp for a small stimulus). The human anterior intraparietal sulcus (hAIPS) was more active for precise grasping than for whole hand grasp independently of stimulus size. Conversely, both the dorsal premotor cortex (dPMC) and the primary motor cortex (M1) were modulated by the relationship between the type of grasp that was adopted and the size of the stimulus. CONCLUSIONS/SIGNIFICANCE The demonstration that activity within the hAIPS is modulated according to different types of grasp, together with the evidence in humans that the dorsal premotor cortex is involved in grasp planning and execution offers a substantial contribution to the current debate about the neural substrates of visuomotor grasp in humans.
منابع مشابه
The Effects of Visuomotor Training Using Pablo System on Hand Grip Strength and Wrist Movements in Adults and Elderly
Objectives: The primary study objective was to assess the effects of visuomotor training on grip strength and wrist movements in adults and the elderly to be efficiently used in rehabilitation. The secondary objective was to compare the post-training changes between the two groups. Methods: This was a pre-test-post-test quasi-experimental study, including healthy individuals aged 25-44 (adults...
متن کاملInsights into seeing and grasping: distinguishing the neural correlates of perception and action.
Vision contributes to both perception and visuomotor control, and it has been suggested that many higher brain structures specialize in one or the other function. An alternative view, presented here, is that most higher brain areas participate in both visuomotor and perceptual functions. In the anterior frontal cortex, for example, the activity of one population of neurons reflects perceptual r...
متن کاملFunctional connectivity patterns of medial and lateral macaque frontal eye fields reveal distinct visuomotor networks.
It has been previously shown that small- and large-amplitude saccades have different functions during vision in natural environments. Large saccades are associated with reaching movements toward objects, whereas small saccades facilitate the identification of more detailed object features necessary for successful grasping and manual manipulation. To determine whether these represent dichotomous...
متن کاملThe Neural Correlates of Grasping in Left-Handers: When Handedness Does Not Matter
Neurophysiological studies showed that in macaques, grasp-related visuomotor transformations are supported by a circuit involving the anterior part of the intraparietal sulcus, the ventral and the dorsal region of the premotor area. In humans, a similar grasp-related circuit has been revealed by means of neuroimaging techniques. However, the majority of “human” studies considered movements perf...
متن کاملGrasping lacks depth constancy in both virtual and real environments.
The use of virtual reality setups allows sophisticated manipulations of visual and haptic feedback important for the study of grasping movements. On this respect, the absence of feedback is shown to induce different systematic biases in visuomotor tasks, such as underestimation of the target distance and, above all, lack of the target depth constancy. The latter is revealed by a decrease in gri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 2 شماره
صفحات -
تاریخ انتشار 2007